Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmacol Res Perspect ; 11(1): e01036, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173415

ABSTRACT

ABBV-47D11 is a neutralizing monoclonal antibody that targets a mutationally conserved hydrophobic pocket distal to the ACE2 binding site of SARS-CoV-2. This first-in-human safety, pharmacokinetics, and antiviral pharmacodynamic assessment in patients with COVID-19 provide an initial evaluation of this antibody that may allow further development. This multicenter, randomized, double-blind, and placebo-controlled single ascending dose study of ABBV-47D11 (180, 600, or 2400 mg) as an intravenous infusion, was in hospitalized and non-hospitalized (confined) adults with mild to moderate COVID-19. Primary outcomes were grade 3 or higher study drug-related adverse events and infusion-related reactions. Secondary outcomes were pharmacokinetic parameters and concentration-time profiles to Day 29, immunogenicity (anti-drug antibodies), and antiviral activity (change in RT-PCR viral load) from baseline to Days 15 and 29. ABBV-47D11 single doses up to 2400 mg were safe and tolerated and no safety signals were identified. The pharmacokinetics of ABBV-47D11 were linear and showed dose-proportional increases in serum concentrations with ascending doses. The exploratory anti-SARS-CoV-2 activity revealed a reduction of viral load at and above the 600 mg dose of ABBV-47D11 regardless of patient demographics and baseline characteristics, however; because of the high inter-individual variability and small sample size a statistical significance was not reached. There is potential for anti-SARS-CoV-2 activity with ABBV-47D11 doses of 600 mg or higher, which could be evaluated in future clinical trials designed and powered to assess viral load reductions and clinical benefit.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Antibodies, Monoclonal/pharmacokinetics , Antiviral Agents , Antibodies, Neutralizing
2.
Clin Pharmacokinet ; 61(9): 1219-1236, 2022 09.
Article in English | MEDLINE | ID: covidwho-1959195

ABSTRACT

Ritonavir-boosted nirmatrelvir (RBN) has been authorized recently in several countries as an orally active anti-SARS-CoV-2 treatment for patients at high risk of progressing to severe COVID-19 disease. Nirmatrelvir is the active component against the SARS-CoV-2 virus, whereas ritonavir, a potent CYP3A inhibitor, is intended to boost the activity of nirmatrelvir by increasing its concentration in plasma to ensure persistence of antiviral concentrations during the 12-hour dosing interval. RBN is involved in many clinically important drug-drug interactions both as perpetrator and as victim, which can complicate its use in patients treated with antiseizure medications (ASMs). Interactions between RBN and ASMs are bidirectional. As perpetrator, RBN may increase the plasma concentration of a number of ASMs that are CYP3A4 substrates, possibly leading to toxicity. As victims, both nirmatrelvir and ritonavir are subject to metabolic induction by concomitant treatment with potent enzyme-inducing ASMs (carbamazepine, phenytoin, phenobarbital and primidone). According to US and European prescribing information, treatment with these ASMs is a contraindication to the use of RBN. Although remdesivir is a valuable alternative to RBN, it may not be readily accessible in some settings due to cost and/or need for intravenous administration. If remdesivir is not an appropriate option, either bebtelovimab or molnupiravir may be considered. However, evidence about the clinical efficacy of bebtelovimab is still limited, and molnupiravir, the only orally active alternative, is deemed to have appreciably lower efficacy than RBN and remdesivir.


Subject(s)
COVID-19 Drug Treatment , Epilepsy , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Epilepsy/drug therapy , Humans , Ritonavir/therapeutic use , SARS-CoV-2
3.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: covidwho-1699506

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

4.
N Engl J Med ; 386(6): 509-520, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1574650

ABSTRACT

BACKGROUND: New treatments are needed to reduce the risk of progression of coronavirus disease 2019 (Covid-19). Molnupiravir is an oral, small-molecule antiviral prodrug that is active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We conducted a phase 3, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of treatment with molnupiravir started within 5 days after the onset of signs or symptoms in nonhospitalized, unvaccinated adults with mild-to-moderate, laboratory-confirmed Covid-19 and at least one risk factor for severe Covid-19 illness. Participants in the trial were randomly assigned to receive 800 mg of molnupiravir or placebo twice daily for 5 days. The primary efficacy end point was the incidence hospitalization or death at day 29; the incidence of adverse events was the primary safety end point. A planned interim analysis was performed when 50% of 1550 participants (target enrollment) had been followed through day 29. RESULTS: A total of 1433 participants underwent randomization; 716 were assigned to receive molnupiravir and 717 to receive placebo. With the exception of an imbalance in sex, baseline characteristics were similar in the two groups. The superiority of molnupiravir was demonstrated at the interim analysis; the risk of hospitalization for any cause or death through day 29 was lower with molnupiravir (28 of 385 participants [7.3%]) than with placebo (53 of 377 [14.1%]) (difference, -6.8 percentage points; 95% confidence interval [CI], -11.3 to -2.4; P = 0.001). In the analysis of all participants who had undergone randomization, the percentage of participants who were hospitalized or died through day 29 was lower in the molnupiravir group than in the placebo group (6.8% [48 of 709] vs. 9.7% [68 of 699]; difference, -3.0 percentage points; 95% CI, -5.9 to -0.1). Results of subgroup analyses were largely consistent with these overall results; in some subgroups, such as patients with evidence of previous SARS-CoV-2 infection, those with low baseline viral load, and those with diabetes, the point estimate for the difference favored placebo. One death was reported in the molnupiravir group and 9 were reported in the placebo group through day 29. Adverse events were reported in 216 of 710 participants (30.4%) in the molnupiravir group and 231 of 701 (33.0%) in the placebo group. CONCLUSIONS: Early treatment with molnupiravir reduced the risk of hospitalization or death in at-risk, unvaccinated adults with Covid-19. (Funded by Merck Sharp and Dohme; MOVe-OUT ClinicalTrials.gov number, NCT04575597.).


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Administration, Oral , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/adverse effects , COVID-19/virology , Cytidine/adverse effects , Cytidine/therapeutic use , Double-Blind Method , Female , Humans , Hydroxylamines/adverse effects , Male , Middle Aged , SARS-CoV-2/isolation & purification , Treatment Outcome , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL